Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Estimation of planar curves, surfaces, and nonplanar space curves defined by implicit equations with applications to edge and range image segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Taubin, Gabriel ; Dept. of Eng., Brown Univ., Providence, RI, USA

The author addresses the problem of parametric representation and estimation of complex planar curves in 2-D surfaces in 3-D, and nonplanar space curves in 3-D. Curves and surfaces can be defined either parametrically or implicitly, with the latter representation used here. A planar curve is the set of zeros of a smooth function of two variables x-y, a surface is the set of zeros of a smooth function of three variables x-y-z, and a space curve is the intersection of two surfaces, which are the set of zeros of two linearly independent smooth functions of three variables x-y-z For example, the surface of a complex object in 3-D can be represented as a subset of a single implicit surface, with similar results for planar and space curves. It is shown how this unified representation can be used for object recognition, object position estimation, and segmentation of objects into meaningful subobjects, that is, the detection of `interest regions' that are more complex than high curvature regions and, hence, more useful as features for object recognition

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:13 ,  Issue: 11 )