By Topic

Observability of place/transition nets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. Giua ; Dept. of Electr. & Electron. Eng., Cagliari Univ., Italy ; C. Seatzu

We discuss the problem of estimating the marking of a place/transition (P/T) net based on event observation. We assume that the net structure is known while the initial marking is totally or partially unknown. We give algorithms to compute a marking estimate that is a lower bound of the actual marking. The special structure of Petri nets allows us to use a simple linear algebraic formalism for estimate and error computation. The error between actual marking and estimate is a monotonically nonincreasing function of the observed word length, and words that lead to error are said to be complete. We define several observability properties related to the existence of complete words, and show how they can be proved. To prove some of them, we also introduce a useful tool, the observer coverability graph, i.e., the usual coverability graph of a P/T net augmented with a vector that keeps track of the estimation error on each place of the net. Finally, we show how the estimate generated by the observer may be used to design a state feedback controller for forbidden marking specifications.

Published in:

IEEE Transactions on Automatic Control  (Volume:47 ,  Issue: 9 )