By Topic

A phase-based approach to the estimation of the optical flow field using spatial filtering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gautama, T. ; Laboratorium voor Neuro- en Psychofysiologie, Katholieke Univ., Leuven, Belgium ; Van Hulle, M.M.

We introduce a new technique for estimating the optical flow field, starting from image sequences. As suggested by Fleet and Jepson (1990), we track contours of constant phase over time, since these are more robust to variations in lighting conditions and deviations from pure translation than contours of constant amplitude. Our phase-based approach proceeds in three stages. First, the image sequence is spatially filtered using a bank of quadrature pairs of Gabor filters, and the temporal phase gradient is computed, yielding estimates of the velocity component in directions orthogonal to the filter pairs' orientations. Second, a component velocity is rejected if the corresponding filter pair's phase information is not linear over a given time span. Third, the remaining component velocities at a single spatial location are combined and a recurrent neural network is used to derive the full velocity. We test our approach on several image sequences, both synthetic and realistic.

Published in:

Neural Networks, IEEE Transactions on  (Volume:13 ,  Issue: 5 )