By Topic

Underwater target classification in changing environments using an adaptive feature mapping

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Azimi-Sadjadi, M.R. ; Dept. of Electr. & Comput. Eng., Colorado State Univ., Fort Collins, CO, USA ; Yao, D. ; Jamshidi, A.A. ; Dobeck, G.J.

A new adaptive underwater target classification system to cope with environmental changes in acoustic backscattered data from targets and nontargets is introduced. The core of the system is the adaptive feature mapping that minimizes the classification error rate of the classifier. The goal is to map the feature vector in such a way that the mapped version remains invariant to the environmental changes. A K-nearest neighbor (K-NN) system is used as a memory to provide the closest matches of an unknown pattern in the feature space. The classification decision is done by a backpropagation neural network (BPNN). Two different cost functions for adaptation are defined. These two cost functions are then combined together to improve the classification performance. The test results on a 40-kHz linear FM acoustic backscattered data set collected from six different objects are presented. These results demonstrate the effectiveness of the adaptive system versus nonadaptive system when the signal-to-reverberation ratio (SRR) in the environment is varying.

Published in:

Neural Networks, IEEE Transactions on  (Volume:13 ,  Issue: 5 )