By Topic

A formal analysis of stopping criteria of decomposition methods for support vector machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Chih-Jen Lin ; Dept. of Comput. Sci. & Inf. Eng., Nat. Taiwan Univ., Taipei, Taiwan

In a previous paper, the author (2001) proved the convergence of a commonly used decomposition method for support vector machines (SVMs). However, there is no theoretical justification about its stopping criterion, which is based on the gap of the violation of the optimality condition. It is essential to have the gap asymptotically approach zero, so we are sure that existing implementations stop in a finite number of iterations after reaching a specified tolerance. Here, we prove this result and illustrate it by two extensions: ν-SVM and a multiclass SVM by Crammer and Singer (2001). A further result shows that, in final iterations of the decomposition method, only a particular set of variables are still being modified. This supports the use of the shrinking and caching techniques in some existing implementations. Finally, we prove the asymptotic convergence of a decomposition method for this multiclass SVM. Discussions on the difference between this convergence proof and the one in another paper by Lin are also included.

Published in:

Neural Networks, IEEE Transactions on  (Volume:13 ,  Issue: 5 )