By Topic

Generalized information potential criterion for adaptive system training

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Erdogmus, D. ; Computational Neuroengineering Lab., Florida Univ., Gainesville, FL, USA ; Principe, J.C.

We have previously proposed the quadratic Renyi's error entropy as an alternative cost function for supervised adaptive system training. An entropy criterion instructs the minimization of the average information content of the error signal rather than merely trying to minimize its energy. In this paper, we propose a generalization of the error entropy criterion that enables the use of any order of Renyi's entropy and any suitable kernel function in density estimation. It is shown that the proposed entropy estimator preserves the global minimum of actual entropy. The equivalence between global optimization by convolution smoothing and the convolution by the kernel in Parzen windowing is also discussed. Simulation results are presented for time-series prediction and classification where experimental demonstration of all the theoretical concepts is presented.

Published in:

Neural Networks, IEEE Transactions on  (Volume:13 ,  Issue: 5 )