By Topic

A tutorial on particle filters for on-line nonlinear/non-Gaussian Bayesian tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Maskell, S. ; Dept. of Eng., Cambridge Univ., UK ; Gordon, N.

Bayesian methods provide a rigorous general framework for dynamic state estimation problems. We describe the nonlinear/non-Gaussian tracking problem and its optimal Bayesian solution. Since the optimal solution is intractable, several different approximation strategies are then described. These approaches include the extended Kalman filter and particle filters. For a particular problem, if the assumptions of the Kalman filter hold, then no other algorithm can out-perform it. However, in a variety of real scenarios, the assumptions do not hold and approximate techniques must be employed. The extended Kalman filter approximates the models used for the dynamics and measurement process, in order to be able to approximate the probability density by a Gaussian. Particle filtering approximates the density directly as a finite number of samples. A number of different types of particle filter exist and some have been shown to outperform others when used for particular applications. However, when designing a particle filter for a particular application, it is the choice of importance density that is critical. These notes are of a tutorial nature and so, to facilitate easy implementation, 'pseudo-code' for algorithms are included at relevant points.

Published in:

Target Tracking: Algorithms and Applications (Ref. No. 2001/174), IEE  (Volume:Workshop )

Date of Conference:

16-17 Oct. 2001