By Topic

Analysis of gate-bias-induced heating effects in deep-submicron ESD protection designs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kwang-Hoon Oh ; Center for Integrated Syst., Stanford Univ., CA, USA ; Duvvury, C. ; Banerjee, K. ; Dutton, R.W.

This paper presents a detailed investigation of the degradation of electrostatic discharge (ESD) strength with high gate bias for deep-submicron salicided ESD protection nMOS transistors, which has significant implications for protection designs where high gate coupling occurs under ESD stress. It has been shown that gate-bias-induced heating is the primary cause of early ESD failure and that this impact of gate bias depends on the finger width of the protection devices. In addition, it has been established that substrate biasing can effectively alleviate the adverse impact of the gate bias and can improve ESD strength despite the gate-coupling level. Improved understanding of ESD behavior for advanced devices under high gate-coupling conditions can extend design capabilities of protection structures.

Published in:

Device and Materials Reliability, IEEE Transactions on  (Volume:2 ,  Issue: 2 )