Cart (Loading....) | Create Account
Close category search window

A model-based methodology for application specific energy efficient data path design using FPGAs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mohanty, S. ; Dept. of Electr. Eng., Univ. of Southern California, Los Angeles, CA, USA ; Seonil Choi ; Jang, Ju-wook ; Prasanna, V.K.

Presents a methodology to design energy-efficient data paths using FPGAs. Our methodology integrates domain specific modeling, coarse-grained performance evaluation, design space exploration, and low level simulation to understand the tradeoffs between energy, latency, and area. The domain specific modeling technique defines a high-level model by identifying various components and parameters specific to a domain that affect the system-wide energy dissipation. A domain is a family of architectures and corresponding algorithms for a given application kernel. The high-level model also consists of functions for estimating energy, latency, and area that facilitate tradeoff analysis. Design space exploration (DSE) analyzes the design space defined by the domain and selects a set of designs. Low-level simulations are used for accurate performance estimation for the designs selected by the DSE and also for final design selection. We illustrate our methodology using a family of architectures and algorithms for matrix multiplication. The designs identified by our methodology demonstrate tradeoffs among energy, latency, and area.

Published in:

Application-Specific Systems, Architectures and Processors, 2002. Proceedings. The IEEE International Conference on

Date of Conference:


Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.