By Topic

Using semantic information to guide efficient parallel I/O on clusters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Schulz, M. ; Inst. fur Inf., Technische Univ. Munchen, Germany

Despite the large I/O capabilities in modern cluster architectures with local disks on each node, applications mostly are not enabled to fully exploit them. This is especially problematic for data intensive applications which often suffer from low I/O performance. As one solution for this problem, a distribution I/O management (DIOM) system has been developed to manage a transparent distribution of data across cluster nodes and to then allow applications to access this data purely from local disks. In order to be effective, however, this distribution process requires semantic information about both the application and the input data. This work therefore extends DIOM to include independent specifications for both data formats and application I/O patterns and thereby decouples them. This work is driven by an application from nuclear medical imaging, the reconstruction of PET images, for which DIOM has proven to be an adequate solution enabling truly scalable I/O and thereby improving the overall application performance.

Published in:

High Performance Distributed Computing, 2002. HPDC-11 2002. Proceedings. 11th IEEE International Symposium on

Date of Conference: