By Topic

A syntactic approach to foundational proof-carrying code

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Hamid, N.A. ; Dept. of Comput. Sci., Yale Univ., New Haven, CT, USA ; Zhong Shao ; Trifonov, V. ; Monnier, S.
more authors

Proof-carrying code (PCC) is a general framework for verifying the safety properties of machine-language programs. PCC proofs are usually written in a logic extended with language-specific typing rules. In foundational proof-carrying code (FPCC), on the other hand, proofs are constructed and verified using strictly the foundations of mathematical logic, with no type-specific axioms. FPCC is more flexible and secure because it is not tied to any particular type system and it has a smaller trusted base. Foundational proofs, however are much harder to construct. Previous efforts on FPCC all required building sophisticated semantic models for types. In this paper, we present a syntactic approach to FPCC that avoids the difficulties of previous work. Under our new scheme, the foundational proof for a typed machine program simply consists of the typing derivation plus the formalized syntactic soundness proof for the underlying type system. We give a translation from a typed assembly language into FPCC and demonstrate the advantages of our new system via an implementation in the Coq proof assistant.

Published in:

Logic in Computer Science, 2002. Proceedings. 17th Annual IEEE Symposium on

Date of Conference:

2002