By Topic

Magnetostatic wave propagation in YIG double layers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

Calculations are presented for the magnetostatic surface wave propagation characteristics in single-crystal yttrium-iron-garnet (YIG) double layers with arbitrary direction of magnetization. The induced uniaxial magnetic anisotropy field is assumed to be different in the two layers; hence, the magnetization in one layer is aligned at an angle with respect to the magnetization direction in the other layer. The magnetostatic field interactions between layers depend on the angle between the two magnetization directions and on the separation between the two YIG layers. The wave propagation directions and time delays in each layer can be strongly affected by the use of an applied magnetic field and the magnetostatic coupling between the two layers, as well as by the uniaxial anisotropy energy in each layer

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:39 ,  Issue: 2 )