By Topic

Performance analysis of a consensus algorithm combining stochastic activity networks and measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Coccoli, A. ; CNUCE, CNR, Pisa, Italy ; Urban, P. ; Bondavalli, A. ; Schiper, A.

Protocols which solve agreement problems are essential building blocks for fault tolerant distributed applications. While many protocols have been published, little has been done to analyze their performance. This paper represents a starting point for such studies, by focusing on the consensus problem, a problem related to most other agreement problems. The paper analyzes the latency of a consensus algorithm designed for the asynchronous model with failure detectors, by combining experiments on a cluster of PCs and simulation using stochastic activity networks. We evaluated the latency in runs (1) with no failures nor failure suspicions, (2) with failures but no wrong suspicions and (3) with no failures but with (wrong) failure suspicions. We validated the adequacy and the usability of the stochastic activity network model by comparing experimental results with those obtained from the model. This has led us to identify limitations of the model and the measurements, and suggests new directions for evaluating the performance of agreement protocols.

Published in:

Dependable Systems and Networks, 2002. DSN 2002. Proceedings. International Conference on

Date of Conference: