By Topic

Capacity of a 3-D multi-layer optical data storage system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yi Zhang ; Call/Recall, Inc., San Diego, CA, USA ; Walker, E.P. ; Wenyi Feng ; Haichuan Zhang
more authors

A high capacity 3D multi-layer optical data storage system is being developed at Call/Recall, Inc. A single beam two-photon recording technique is used to record data tracks and layers within a monolithic thick plastic disk (D.A. Parthenopoulos and P.M. Rentzepis, Science vol. 245, pp. 843-845, 1989; H. Zhang et al., Proc. SPIE vol. 4090, pp. 174-178, 2000). The recorded bits emit broadband fluorescence when excited by a laser beam within the absorption band of the written molecule. The recorded volume has no noticeable index change in the visible spectrum. The recorded bits are non-reflective for the readout beam and recording beam. These properties allow the recording and readout beams to access multiple layers in parallel (H. Zhang, 18th IEEE Symp. Mass Storage Systems, pp. 225-236, 2000; E.P. Walker et al., ODS 2002; E.P. Walker et al., ODS 2001, Proc. SPIE, 2001). The capacity of the two-photon 3D multi-layer optical data storage system is influenced by the recorded bit volume, track pitch and layer separation.

Published in:

Optical Memory and Optical Data Storage Topical Meeting, 2002. International Symposium on

Date of Conference: