By Topic

Time-frequency spectral estimation of multichannel EEG using the Auto-SLEX method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
S. D. Cranstoun ; Dept. of Bioeng., Pennsylvania Univ., Philadelphia, PA, USA ; H. C. Ombao ; R. von Sachs ; Wensheng Guo
more authors

In this paper, we apply a new time-frequency spectral estimation method for multichannel data to epileptiform electroencephalography (EEG). The method is based on the smooth localized complex exponentials (SLEX) functions which are time-frequency localized versions of the Fourier functions and, hence, are ideal for analyzing nonstationary signals whose spectral properties evolve over time. The SLEX functions are simultaneously orthogonal and localized in time and frequency because they are obtained by applying a projection operator rather than a window or taper. In this paper, we present the Auto-SLEX method which is a statistical method that 1) computes the periodogram using the SLEX transform, 2) automatically segments the signal into approximately stationary segments using an objective criterion that is based on log energy, and 3) automatically selects the optimal bandwidth of the spectral smoothing window. The method is applied to the intracranial EEG from a patient with temporal lobe epilepsy. This analysis reveals a reduction in average duration of stationarity in preseizure epochs of data compared to baseline. These changes begin up to hours prior to electrical seizure onset in this patient.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:49 ,  Issue: 9 )