By Topic

Estimation of neural dynamics from MEG/EEG cortical current density maps: application to the reconstruction of large-scale cortical synchrony

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
O. David ; Cognitive Neurosci. & Brain Imaging Lab., CNRS, Paris, France ; L. Garnero ; D. Cosmelli ; F. J. Varela

There is a growing interest in elucidating the role of specific patterns of neural dynamics-such as transient synchronization between distant cell assemblies-in brain functions. Magnetoencephalography (MEG)/electroencephalography (EEG) recordings consist in the spatial integration of the activity from large and multiple remotely located populations of neurons. Massive diffusive effects and poor signal-to-noise ratio (SNR) preclude the proper estimation of indices related to cortical dynamics from nonaveraged MEG/EEG surface recordings. Source localization from MEG/EEG surface recordings with its excellent time resolution could contribute to a better understanding of the working brain. We propose a robust and original approach to the MEG/EEG distributed inverse problem to better estimate neural dynamics of cortical sources. For this, the surrogate data method is introduced in the MEG/EEG inverse problem framework. We apply this approach on nonaveraged data with poor SNR using the minimum norm estimator and find source localization results weakly sensitive to noise. Surrogates allow the reduction of the source space in order to reconstruct MEG/EEG data with reduced biases in both source localization and time-series dynamics. Monte Carlo simulations and results obtained from real MEG data indicate it is possible to estimate noninvasively an important part of cortical source locations and dynamic and, therefore, to reveal brain functional networks.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:49 ,  Issue: 9 )