Cart (Loading....) | Create Account
Close category search window
 

Comparison of machine learning and traditional classifiers in glaucoma diagnosis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Kwokleung Chan ; California Univ., San Diego, La Jolla, CA, USA ; Te-Won Lee ; Sample, P.A. ; Goldbaum, M.H.
more authors

Glaucoma is a progressive optic neuropathy with characteristic structural changes in the optic nerve head reflected in the visual field. The visual-field sensitivity test is commonly used in a clinical setting to evaluate glaucoma. Standard automated perimetry (SAP) is a common computerized visual-field test whose output is amenable to machine learning. We compared the performance of a number of machine learning algorithms with STATPAC indexes mean deviation, pattern standard deviation, and corrected pattern standard deviation. The machine learning algorithms studied included multilayer perceptron (MLP), support vector machine (SVM), and linear (LDA) and quadratic discriminant analysis (QDA), Parzen window, mixture of Gaussian (MOG), and mixture of generalized Gaussian (MGG). MLP and SVM are classifiers that work directly on the decision boundary and fall under the discriminative paradigm. Generative classifiers, which first model the data probability density and then perform classification via Bayes' rule, usually give deeper insight into the structure of the data space. We have applied MOG, MGG, LDA, QDA, and Parzen window to the classification of glaucoma from SAP. Performance of the various classifiers was compared by the areas under their receiver operating characteristic curves and by sensitivities (true-positive rates) at chosen specificities (true-negative rates). The machine-learning-type classifiers showed improved performance over the best indexes from STATPAC. Forward-selection and backward-elimination methodology further improved the classification rate and also has the potential to reduce testing time by diminishing the number of visual-field location measurements.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:49 ,  Issue: 9 )

Date of Publication:

Sept. 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.