Cart (Loading....) | Create Account
Close category search window
 

A novel method for the detection of apnea and hypopnea events in respiration signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Varady, P. ; Lab. of Med. Informatics, Budapest Univ. of Technol. & Econ., Hungary ; Micsik, T. ; Benedek, S. ; Benyo, Z.

The monitoring of breathing dynamics is an essential diagnostic tool in various clinical environments, such as sleep diagnostics, intensive care and neonatal monitoring. This paper introduces an innovative signal classification method that is capable of on-line detection of the presence or absence of normal breathing. Four different artificial neural networks are presented for the recognition of three different patterns in the respiration signals (normal breathing, hypopnea, and apnea). Two networks process the normalized respiration signals directly, while another two use sophisticatedly preprocessed signals. The development of the networks was based on training sets from the polysomnographic records of nine different patients. The detection performance of the networks was tested and compared by using up to 8000 untrained breathing patterns from 16 different patients. The networks which classified the preprocessed respiration signals produced an average detection performance of over 90%. In the light of the moderate computational power used, the presented method is not only viable in clinical polysomnographs and respiration monitors, but also in portable devices.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:49 ,  Issue: 9 )

Date of Publication:

Sept. 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.