Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

On evaluating the cumulative performance distribution of fault-tolerant computer systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Donatiello, L. ; Dipartimento di Matematica, Bologna Univ., Italy ; Grassi, V.

Fault-tolerant computer systems may be evaluated by calculating their cumulative performance (e.g., number of processes jobs) over a finite mission time. A method for calculating the cumulative performance distribution assuming that the system fault-repair behavior can be modeled by a homogeneous Markov process is described. The method proposed for calculating the probability distribution of the accumulated reward over a finite mission is applicable to models of repairable and nonrepairable systems. The related solution algorithm shows a low polynomial computational complexity. The mathematical model is introduced, and the results already presented in the literature are surveyed. A comprehensive analysis of the time and space complexity of the proposed solution algorithm is presented. A numerical example is given

Published in:

Computers, IEEE Transactions on  (Volume:40 ,  Issue: 11 )