By Topic

Marked point process in image analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

In this article, we consider the marked point process framework for image analysis. We first show that marked point processes are more adapted than Markov random fields (MRFs) including some geometrical constraints in the solution and dealing with strongly correlated noise. Then, we consider three applications in remote sensing: road network extraction, building extraction, and image segmentation. For each of them, we define a prior model, incorporating geometrical constraints on the solution. We also derive a reversible jump Monte Carlo Markov chains (RJMCMC) algorithm to obtain the optimal solution with respect to the defined models. Results show that this approach is promising and can be applied to a broad range of image processing problems.

Published in:

Signal Processing Magazine, IEEE  (Volume:19 ,  Issue: 5 )