By Topic

SAR image denoising: a multiscale robust statistical approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. Achim ; Dept. of Med. Phys., Patras Univ., Greece ; A. Bezerianos ; P. Tsakalides

Synthetic aperture radar (SAR) images are inherently affected by multiplicative speckle noise, which is due to the coherent nature of the scattering phenomenon. It appears sensible to reduce speckle in SAR images, provided that the structural features and textural information are not lost. We present a novel speckle removal algorithm within the framework of wavelet analysis. First, we show that the subband decompositions of logarithmically transformed SAR images are best described by alpha-stable distributions, a family of heavy-tailed densities. Consequently, we design a maximum a posteriori (MAP) estimator that exploits this a priori information. We use the alpha-stable model to develop a blind speckle-suppression processor that performs a non-linear operation on the data, and we relate this non-linearity to the degree of non-Gaussianity of the data. Finally, we compare our proposed method to a current state-of-the-art soft thresholding technique applied on an aerial image and we quantify the achieved performance improvement.

Published in:

Digital Signal Processing, 2002. DSP 2002. 2002 14th International Conference on  (Volume:2 )

Date of Conference: