By Topic

Design and experimental testing of a robust multivariable controller on a tokamak

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ariola, M. ; Associazione EU-RATOM/ENEA/CREATE, Universita degli Studi di Napoli Federico II, Naples, Italy ; Ambrosino, G. ; Pironti, A. ; Lister, J.B.
more authors

Describes the design and the experimental validation of a multivariable digital controller for a Tokamak, the Tokamak a configuration variable (TCV). The design of the controller is based on a linearized model of the plasma confined in the Tokamak. The plant is multiple-input-multiple-output (MIMO) and the various outputs are strongly coupled. Moreover the plant is open-loop unstable. The scope of the controller is to stabilize the plasma and to guarantee some closed-loop performance in terms of decoupling among the plant outputs. The proposed controller is composed of two nested loops: one is devoted to the vertical stabilization, the other, designed using the ℋ technique, guarantees the control of the plasma current and of the plasma shape. After massive simulations, this controller has been successfully tested on the plant. The experimental results show a significant improvement of the performance with respect to those obtained with a proportional integral derivative (PID) MIMO controller, that was used before on the plant

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:10 ,  Issue: 5 )