Cart (Loading....) | Create Account
Close category search window
 

Equivalent circuit modeling of static substrate thermal coupling using VCVS representation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Walkey, D.J. ; Dept. of Electron., Carleton Univ., Ottawa, Ont., Canada ; Smy, T.J. ; Dickson, R.G. ; Brodsky, J.S.
more authors

A new method is described which allows substrate thermal coupling between active devices to be accurately represented in a circuit simulation environment. The method, based on a substrate thermal equivalent circuit containing resistors and voltage-controlled voltage sources, allows for exact representation of substrate thermal coupling at any number of evaluation points. The topology of the equivalent circuit and derivation of its coefficients is described, and application of the technique to inter- and intradevice thermal effects is illustrated. The method is applied with a simple self-heating compact model representation to a measured GaAs device characteristic exhibiting gain collapse, and is found to accurately predict electrothermal behavior.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:37 ,  Issue: 9 )

Date of Publication:

Sep 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.