By Topic

Low-power 1:16 DEMUX and one-chip CDR with 1:4 DEMUX using InP-InGaAs heterojunction bipolar transistors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Ishii, K. ; NTT Photonics Labs., Kanagawa, Japan ; Nosaka, H. ; Nakajima, H. ; Kurishima, K.
more authors

Using InP-InGaAs heterojunction bipolar transistor (HBT) technology, we have successfully designed and fabricated a low-power 1:16 demultiplexer (DEMUX) integrated circuit (IC) and one-chip clock and data recovery (CDR) with a 1:4 DEMUX IC for 10-Gb/s optical communications systems. The InP-InGaAs HBTs were fabricated by a nonself-aligned process for high uniformity of device characteristics and producibility. The 1:16 DEMUX IC and the one-chip CDR with the 1:4 DEMUX IC consist of approximately 1200 and 460 transistors, respectively. We have confirmed error-free operation at 10 Gb/s for all data outputs of both ICs. The 1:16 DEMUX IC and the one-chip CDR with the 1:4 DEMUX IC consume only 1 W and 950 mW, respectively. These results demonstrate the feasibility of InP-InGaAs HBTs for low power high-integration optical communication ICs.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:37 ,  Issue: 9 )