By Topic

PCS/W-CDMA dual-band MMIC power amplifier with a newly proposed linearizing bias circuit

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Youn Sub Noh ; Sch. of Eng., Inf. & Commun. Univ., Taejon, South Korea ; Chul Soon Park

A personal communications service/wide-band code division multiple access (PCS/W-CDMA) dual-band monolithic microwave integrated circuit (MMIC) power amplifier with a single-chip MMIC and a single-path output matching network is demonstrated by adopting a newly proposed on-chip linearizer. The linearizer is composed of the base-emitter diode of an active bias transistor and a capacitor to provide an RF short at the base node of the active bias transistor. The linearizer enhances the linearity of the power amplifier effectively for both PCS and W-CDMA bands with no additional DC power consumption, and has negligible insertion power loss with almost no increase in die area. It improves the input 1-dB gain compression point by 18.5 (20) dB and phase distortion by 6.1° (12.42°) at an output power of 28 (28) dBm for the PCS (W-CDMA) band while keeping the base bias voltage of the power amplifier as designed. A PCS and W-CDMA dual-band InGaP heterojunction bipolar transistor MMIC power amplifier with single input and output and no switch for band selection is embodied by implementing the linearizer and by designing the amplifier to have broad-band characteristics. The dual-band power amplifier exhibits an output power of 30 (28.5) dBm, power-added efficiency of 39.5 % (36 %), and adjacent channel power ratio of -46 (-50) dBc at the output power of 28 (28) dBm under 3.4-V operation voltage for PCS (W-CDMA) applications.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:37 ,  Issue: 9 )