By Topic

Segmentation of coronary arteriograms by iterative ternary classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kottke, D.P. ; Dept. of Electr. Eng., Rhode Island Univ., Kingston, RI, USA ; Ying Sun

A segmentation algorithm for extracting arterial structures in coronary angiograms is presented. The algorithm mimics the process of interactive interpretation in human vision by iteratively implementing a ternary classification and learning process. Two gray-scale thresholds are computed to define three pixel classes: artery, background, and undecided. Then, two new thresholds for undecided pixels are computed using statistics conditioned by the current classification. The threshold adaptation is governed by a learning algorithm based on the line and consistency measurements around each pixel. The process converges and results in a binary image. The performance of this algorithm on human coronary arteriograms was compared qualitatively to that of a relaxation algorithm and of a scattering-based algorithm. Quantitative comparison was also made possible with computer generated images, which were obtained with the help of a model of the imaging chain and a process of interactive visualization of the modeled data. The iterative ternary classifier showed the best performance over a broad range of image quality. The study also demonstrated the use of visualization and user interaction in model building and algorithm development.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:37 ,  Issue: 8 )