By Topic

Metal nanocrystal memories. I. Device design and fabrication

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Liu, Z. ; Sch. of Electr. & Comput. Eng., Cornell Univ., Ithaca, NY, USA ; Lee, C. ; Narayanan, V. ; Pei, G.
more authors

This paper describes the design principles and fabrication process of metal nanocrystal memories. The advantages of metal nanocrystals over their semiconductor counterparts include higher density of states, stronger coupling with the channel, better size scalability, and the design freedom of engineering the work functions to optimize device characteristics. One-dimensional (1-D) analyses are provided to illustrate the concept of work function engineering, both in direct-tunneling and F-N-tunneling regimes. A self-assembled nanocrystal formation process by rapid thermal annealing of ultrathin metal film deposited on top of gate oxide is developed and integrated with NMOSFET to fabricate such devices

Published in:

Electron Devices, IEEE Transactions on  (Volume:49 ,  Issue: 9 )