By Topic

Electron and hole mobility enhancement in strained SOI by wafer bonding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
Lijuan Huang ; IBM Thomas J. Watson Res. Center, Yorktown Heights, NY, USA ; J. O. Chu ; S. A. Goma ; C. P. D'Emic
more authors

N- and p-MOSFETs have been fabricated in strained Si-on-SiGe-on-insulator (SSOI) with high (15-25%) Ge content. Wafer bonding and H-induced layer transfer techniques enabled the fabrication of the high Ge content SiGe-on-insulator (SGOI) substrates. Mobility enhancement of 50% for electrons (with 15% Ge) and 15-20% for holes (with 20-25% Ge) has been demonstrated in SSOI MOSFETs. These mobility enhancements are commensurate with those reported for FETs fabricated on strained silicon on bulk SiGe substrates

Published in:

IEEE Transactions on Electron Devices  (Volume:49 ,  Issue: 9 )