By Topic

ON/OFF phase shift keying for chaos-encrypted communication using external-cavity semiconductor lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Heil, T. ; Inst. of Appl. Phys., Technische Hochschule Darmstadt, Germany ; Mulet, J. ; Fischer, Ingo ; Mirasso, C.R.
more authors

Synchronization phenomena of two chaotically emitting semiconductor lasers subject to delayed optical feedback are investigated. The lasers are unidirectionally coupled via their optical fields. Our experimental and numerical studies demonstrate that the relative optical feedback phase is of decisive importance: a characteristic synchronization scenario evolves under variation of the relative optical-feedback phase mediating cyclically between chaos synchronization in conjunction with coherent fields, and uncorrelated states in conjunction with incoherent fields. As a key result, we propose, and numerically demonstrate, a novel ON/OFF phase shift keying method opening up new perspectives for applications in communication systems using chaotic carriers.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:38 ,  Issue: 9 )