Cart (Loading....) | Create Account
Close category search window

Analysis and modeling of control tasks in dynamic systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ursem, R.K. ; Dept. of Comput. Sci., Aarhus Univ., Denmark ; Krink, T. ; Jensen, M.T. ; Michalewicz, Z.

Most applications of evolutionary algorithms deal with static optimization problems. However, in recent years, there has been a growing interest in time-varying (dynamic) problems, which are typically found in real-world scenarios. One major challenge in this field is the design of realistic test-case generators (TCGs), which requires a systematic analysis of dynamic optimization tasks. So far, only a few TCGs have been suggested. Our investigation leads to the conclusion that these TCGs are not capable of generating realistic dynamic benchmark tests. The result of our research is the design of a new TCG capable of producing realistic nonstationary landscapes

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:6 ,  Issue: 4 )

Date of Publication:

Aug 2002

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.