By Topic

Structured porous media for high heat flux fusion applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
J. E. Pulsifer ; California Univ., San Diego, La Jolla, CA, USA ; A. R. Raffray

The use of structured porous media is a proposed technique to achieve higher heat transfer coefficients by increasing the specific surface area for heat transfer while aiming to maintain acceptable pressure drop and pumping power. The general design strategy is to minimize the coolant flow path through the porous medium while optimizing the porous medium characteristics to minimize the friction pressure drop for a given heat transfer performance. A comprehensive thermo-fluid model called MERLOT was used to assess the use of porous heat transfer media for fusion plasma facing component applications. A parametric study was performed to assess the relative importance on the heat transfer performance of key design parameters including the solid conductivity, the porosity magnitude and distribution, the microstructure characteristic dimension, and the local heat transfer coefficient. The analysis was carried out for different incident heat fluxes of up to 30 MW/m2 with the goal of identifying particularly attractive sets of design parameters for plasma facing components.

Published in:

Fusion Engineering, 2002. 19th Symposium on

Date of Conference: