Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Numerical methods for beautification of reverse engineered geometric models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Langbein, F.C. ; Dept. of Comput. Sci., Cardiff Univ., UK ; Marshall, A.D. ; Martin, R.R.

Boundary representation models reconstructed from 3D range data suffer from various inaccuracies caused by noise in the data and the model building software. The quality of such models can be improved in a beautification step, which finds geometric regularities approximately present in the model and tries to impose a consistent subset of these regularities on the model. A framework for beautification and numerical methods to select and solve a consistent set of constraints deduced from a set of regularities are presented. For the initial selection of consistent regularities likely to be part of the model's ideal design priorities, and rules indicating simple inconsistencies between the regularities are employed. By adding regularities consecutively to an equation system and trying to solve it by using quasi-Newton optimization methods, inconsistencies and redundancies are detected. The results of experiments are encouraging and show potential for an expansion of the methods based on degree of freedom analysis.

Published in:

Geometric Modeling and Processing, 2002. Proceedings

Date of Conference:

2002