By Topic

An efficient plane wave spectral analysis to predict the focal region fields of parabolic reflector antennas for small and wide angle scanning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nagamune, A. ; NKK Corp., Kawasaki, Japan ; Pathak, P.H.

An efficient approach is described for calculating the field distribution in the focal region of an electrically large, symmetric or offset parabolic reflector antenna with an arbitrary rim contour, when the concave reflector surface is fully illuminated by an obliquely incident arbitrary electromagnetic plane wave. The dominant contribution to the focal-region fields is found by transforming the physical-optics integral over the reflector surface into a plane-wave spectral (PWS) integral. The PWS integral is evaluated rapidly via the fast Fourier transform (FET) algorithm to furnish, in only a single computation, the field for every place in the focal plane (or any plane parallel to it) within the focal region for a given direction of the incident wave. The correction to the physical-optics field is relatively small in the focal region and may therefore be neglected. Numerical results based on this PWS approach are presented, and their accuracy is established by comparison with results based on other approaches

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:38 ,  Issue: 11 )