Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Tracking targets using adaptive Kalman filtering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gutman, P.-O. ; El-Op Electro-Opt. Ind. Ltd., Rehovot, Israel ; Velger, M.

A simple algorithm for estimating the unknown process noise variance of an otherwise known linear plant, using a Kalman filter is suggested. The process noise variance estimator is essentially dead beat, using the difference between the expected prediction error variance, computed in the Kalman filter, and the measured prediction error variance. The estimate is used to adapt the Kalman filter. The use of the adaptive filter is demonstrated in a simulated example in which a wildly maneuvering target is tracked

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:26 ,  Issue: 5 )