By Topic

Experimental and theoretical characterization of a 40-Gb/s long-haul single-channel transmission system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
R. Holzlohner ; Dept. of Comput. Sci., Maryland Univ., Baltimore, MD, USA ; H. N. Ereifej ; V. S. Grigoryan ; G. M. Carter
more authors

We present a comparison between experiment and simulation of a 40-Gb/s periodically stationary dispersion-managed soliton (DMS) system in a recirculating loop. We find that we can propagate an error-free signal over 6400 km at 40 Gb/s and over 12 000 km if we lower the data rate to 10 Gb/s, keeping all other parameters constant. A careful analysis of the limiting factors shows the strong influence of nonlinear optical pulse-to-pulse interactions, causing a large increase in timing jitter. At a transmission distance of 6400 km, a large fraction of the jitter is due to pulse-to-pulse interactions. Moreover, we find that the system performance is very sensitive to parameter variations. We conclude that periodically stationary DMS systems suffer from numerous problems when increasing the data rate, suggesting that it may be impractical for wavelength-division multiplex transmission at 40 Gb/s.

Published in:

Journal of Lightwave Technology  (Volume:20 ,  Issue: 7 )