By Topic

The channel capacity of a multispan DWDM system employing dispersive nonlinear optical fibers and an ideal coherent optical receiver

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Jau Tang ; Bell Laboratories, Lucent Technologies

We present channel capacity calculations for a multispan dense wavelength division multiplexed (DWDM) system that employs an ideal coherent optical receiver. Both dispersive and dispersion-free single-mode nonlinear optical fibers are considered. Degradation due to interference among Kerr nonlinear noise and optical amplifier noise accumulated along many spans is included in our model calculations. We will show that in the low-power quasi--linear regime, a multispan system can be approximated by an "equivalent" single-span system. The "equivalent" Kerr coefficient for most dispersive fibers is shown to increase with the square root of the number of spans, in contrast to the linear scaling dependence for a dispersion-free fiber. For a conventional fiber with β = -20 ps2/km, our calculated capacity of 10 (2 x 80 km), 8 (8 x 80 km), and 6 (32 x 80 km) bps/Hz indicates that today's technologies with 0.4 bps/Hz have only realized 5% of the theoretical total capacity. We have shown an increased (or decreased) capacity by about 1 bps/Hz per ten-fold increase (decrease) in dispersion.

Published in:

Journal of Lightwave Technology  (Volume:20 ,  Issue: 7 )