Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Spontaneous emission rate alteration in optical waveguide structures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Brorson, S.D. ; Dept. of Electr. Eng. & Comput. Sci., MIT, Cambridge, MA, USA ; Yokoyama, H. ; Ippen, E.P.

Optical microcavities hold technological promise for constructing efficient, high-speed, semiconductor lasers. Achieving the desired effects depends on the degree to which spontaneous emission may be altered by the presence of the cavity. The radiating modes of an oscillating electric dipole placed between two planar metallic mirrors (one-dimensional confinement) and placed in an optical-wire structure (two-dimensional confinement) are discussed. The analysis is carried out using a mode-counting method. The authors show that this method is simpler and more intuitive than traditional classical and quantum electrodynamical calculations. Using the results of the analysis, it is found that an optical wire provides much larger spontaneous-emission-rate alteration than a planar mirror structure

Published in:

Quantum Electronics, IEEE Journal of  (Volume:26 ,  Issue: 9 )