Cart (Loading....) | Create Account
Close category search window

Iterative space-time processing for multiuser detection in multipath CDMA channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Huaiyu Dai ; Dept. of Electr. Eng., Princeton Univ., NJ, USA ; Poor, H.V.

Space-time processing and multiuser detection are two promising techniques for combating multipath distortion and multiple-access interference in code division multiple access (CDMA) systems. To overcome the computational burden that rises very quickly with increasing numbers of users and receive antennas in applying such techniques, iterative implementations of several space-time multiuser detection algorithms are considered here. These algorithms include iterative linear space-time multiuser detection, Cholesky iterative decorrelating decision-feedback space-time multiuser detection, multistage interference canceling space-time multiuser detection, and expectation-maximization (EM)-based iterative space-time multiuser detection. A new space-time multiuser receiver structure that allows for efficient implementation of iterative processing is also introduced. Fully exploiting various types of diversity through joint space-time processing and multiuser detection brings substantial gain over single-receiver-antenna or single-user-based methods. It is shown that iterative implementation of linear and nonlinear space-time multiuser detection schemes discussed in this paper realizes this substantial gain and approaches the optimum performance with reasonable complexity. Among the iterative space-time multiuser receivers considered in this paper, the EM-based (SAGE) iterative space-time multiuser receiver introduced here achieves the best performance with excellent convergence properties.

Published in:

Signal Processing, IEEE Transactions on  (Volume:50 ,  Issue: 9 )

Date of Publication:

Sep 2002

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.