Cart (Loading....) | Create Account
Close category search window
 

Early validation of the Multi-angle Imaging SpectroRadiometer (MISR) radiometric scale

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Bruegge, C.J. ; Jet Propulsion Lab., California Inst. of Technol., Pasadena, CA, USA ; Chrien, N.L. ; Ando, R.R. ; Diner, D.J.
more authors

The Multi-angle Imaging SpectroRadiometer (MISR) instrument consists of nine cameras, four spectral bands each, and an on-board calibrator (OBC). Experiments using the latter allow camera radiometric coefficients to be updated bimonthly. Data products are thus calibrated to a stable radiometric scale, even in the presence of instrument response changes. The camera, band, and pixel-relative calibrations are accurately determined using the OBC. Conversely, as the OBC itself is subject to response degradation, MISR also conducts annual field vicarious calibration campaigns. The first of these, conducted in June 2000 at a desert site in Nevada, has been used to establish the present absolute radiometric scale. Validation of this radiometric scale, using AirMISR, shows consistency to within 4%. Following these studies, however, it was determined that MISR radiometry is subject to scene-dependent effects due to ghosting that, for the Nevada test sites, reduces the apparent radiance by 3%. Correction for this effect is required in order to avoid radiometric errors over sites that do not exhibit the same background contrast. Additional studies are in progress, with plans to correct for scene-contrast effects in future Level 1B1 processing.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:40 ,  Issue: 7 )

Date of Publication:

Jul 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.