Cart (Loading....) | Create Account
Close category search window

EDFA-based DWDM lightwave transmission systems with end-to-end power and SNR equalization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tonguz, O.K. ; Dept. of Electr. & Comput. Eng., State Univ. of New York, Buffalo, NY, USA ; Flood, F.A.

An approximate analysis is presented which can be used to predict the performance of power and signal-to-noise ratio (SNR) equalization schemes when applied to dense wavelength-division multiplexing (DWDM) lightwave systems employing erbium-doped fiber amplifier (EDFA) cascades. Expressions are provided which relate the maximum number of amplifiers, EDFA gain imbalance, bit rate (Rb), transmitter power, receiver dynamic range and number of channels. The relative advantages of these two equalization strategies are quantified by comparing the maximum number of amplifiers allowed by each scheme. It is shown that, while SNR equalization represents, on balance, the more desirable equalization strategy for future EDFA-based DWDM lightwave transmission systems, under certain conditions power equalization may be a better choice. When employing an APD receiver, for instance, power equalization can support 1.9 times more amplifiers than SNR equalization. However, when employing the more conventional preamplified PIN/FET receiver, SNR equalization can support 1.7 times more amplifiers than power equalization.

Published in:

Communications, IEEE Transactions on  (Volume:50 ,  Issue: 8 )

Date of Publication:

Aug 2002

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.