By Topic

Fuzzy color histogram and its use in color image retrieval

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ju Han ; Dept. of Electr. Eng., California Univ., Riverside, CA, USA ; Kai-Kuang Ma

A conventional color histogram (CCH) considers neither the color similarity across different bins nor the color dissimilarity in the same bin. Therefore, it is sensitive to noisy interference such as illumination changes and quantization errors. Furthermore, CCHs large dimension or histogram bins requires large computation on histogram comparison. To address these concerns, this paper presents a new color histogram representation, called fuzzy color histogram (FCH), by considering the color similarity of each pixel's color associated to all the histogram bins through fuzzy-set membership function. A novel and fast approach for computing the membership values based on fuzzy c-means algorithm is introduced. The proposed FCH is further exploited in the application of image indexing and retrieval. Experimental results clearly show that FCH yields better retrieval results than CCH. Such computing methodology is fairly desirable for image retrieval over large image databases.

Published in:

Image Processing, IEEE Transactions on  (Volume:11 ,  Issue: 8 )