By Topic

Optimal multidimensional bit-rate control for video communication

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Reed, E.C. ; Convergent Syst. Div., Harmonic Inc., White Plains, NY, USA ; Lim, J.S.

In conventional bit-rate control, the buffer level is controlled by adapting the quantization step size with a fixed frame rate and spatial resolution. We consider a multidimensional (M-D) bit-rate control where the frame rate, spatial resolution and quantization step size are jointly adapted for buffer control. We introduce a fundamental framework to formalize the description of the M-D buffer-constrained allocation problem. Given a set of operating points on a M-D grid to code a nonstationary source in a buffer-constrained environment, we formulate the optimal solution. The formulation allows a skipped frame to be reconstructed from one coded frame using any temporal interpolation method and is shown to be a generalization of formulations considered in the literature. In the case of intraframe coding, a dynamic programming algorithm is introduced to find the optimal solution. The algorithm allows one to compare operational rate-distortion bounds of the M-D and conventional approaches. We also discuss how a solution can be obtained for the case of interframe coding using the optimal dynamic programming algorithm for intraframe coding by making an independent allocation approximation. We illustrate that the M-D approach can provide bit-rate reductions over 50%. We also show that the M-D approach with limited-lookahead provides a slightly suboptimal solution that consistently outperforms the conventional approach with full-lookahead.

Published in:

Image Processing, IEEE Transactions on  (Volume:11 ,  Issue: 8 )