By Topic

Design of low-phase-noise CMOS ring oscillators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Liang Dai ; Minnesota Univ., Minneapolis, MN, USA ; Harjani, R.

This paper presents a framework for modeling the phase noise in complementary metal-oxide-semiconductor (CMOS) ring oscillators. The analysis considers both linear and nonlinear operations, and it includes both device noise and digital switching noise coupled through the power supply and substrate. In this paper, we show that fast rail-to-rail switching is required in order to achieve low phase noise. Further, flicker noise from the bias circuit can potentially dominate the phase noise at low offset frequencies. We define the effective Q factor for ring oscillators with large and nonlinear voltage swings and predict its increase for CMOS processes with smaller feature sizes. Our phase-noise analysis is validated via simulation and measurement results for ring oscillators fabricated in a number of CMOS processes.

Published in:

Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on  (Volume:49 ,  Issue: 5 )