By Topic

Optimal resource allocation in new product development projects: a control-theoretic approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yanfeng Wang ; i2 Technol. Inc., Cambridge, MA, USA ; Perkins, J.R. ; Khurana, A.

Considers problems motivated by the dynamic allocation of limited heterogeneous resources in new product development (NPD) projects. The interchangeability of resources and simultaneous resource sharing are defining characteristics of NPD processes. A continuous flow model is introduced that incorporates these features. For problems without activity precedence constraints, a linear program is presented which yields the minimum completion time for all activities. A dynamic, rule-based algorithm is shown to be optimal for two resources processing a multiple-activity arrival stream. For problems with precedence constraints, some special cases are solved, and structural properties of the class of optimal controls for the general problem are discussed.

Published in:

Automatic Control, IEEE Transactions on  (Volume:47 ,  Issue: 8 )