By Topic

Mixed gas Z pinch experiments using a shell-on-shell nozzle on Double-EAGLE

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Levine, J.S. ; Pulse Sci. Div., Titan Syst. Corp., San Leandro, CA, USA ; Failor, B.H. ; Sze, H.M. ; Bell, D.

A series of Z pinch experiments using argon and krypton was conducted on the Double-EAGLE pulse power driver at 3.5 to 4.0 MA peak current and 170-190 ns implosion time. A shell-on-shell nozzle provided the opportunity to separate the two gases and to control which was driven more strongly (by virtue of being in the inner plenum). With argon in the inner plenum, 12 to 16±3 kJ krypton L-shell and 8 to 10±3 kJ of argon K-shell radiation was produced. With krypton in the inner plenum, 23.6 ±2.5 kJ of krypton L-shell and 2.5±2.3 kJ of argon K-shell radiation were produced. Since the optimum implosion times for the two gases were different, changing the mass of the z pinch varied the ratio of the yields. Using a streak spectrograph and PCDs with a Ross filter pair, the time history of the krypton and the argon radiation could be distinguished and seen to be simultaneous. Spectroscopic measurements of a chlorine dopant in the inner shell gas demonstrated that the implosions with krypton achieved lower density and electron temperature than with argon whether the krypton was in the inner or outer plenum.

Published in:

Plasma Science, IEEE Transactions on  (Volume:30 ,  Issue: 2 )