By Topic

Strong wiggler field assisted amplification in a second-harmonic waveguide free electron laser

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiehe Zhong ; Dept. of Electron. & Electr. Eng., Leicester Univ., UK ; Kong, M.G.

As a technique to reduce the size of compact waveguide free electron lasers (FELs) operated from microwave to the far infrared, a longitudinal interaction mechanism was recently proposed to operate waveguide FELs at the second harmonic. With a gain formulation based on Madey's theorem in the limit of small wiggler field, it was shown analytically that second harmonic waveguide FELs can reduce significantly the electron energy required for radiation at a given frequency. As it is advantageous to operate second harmonic waveguide FELs with strong wiggler field, Madey's theorem is used here to reformulate their interaction gain for strong wiggler fields up to aω202β z02=1with the axial electron velocity Taylor expanded to the eighth order of the wiggler field. Given that Madey's theorem has not been established for second harmonic waveguide FELs, their interaction gain is also formulated independently by solving their pendulum equation without recourse to Madey's theorem. These two gain formulas are not analytically identical, but numerically they lead to an excellent agreement over a wide range of system parameters, thus confirming the applicability of Madey's theorem. The interaction analyses presented form a thorough and detailed description of second harmonic waveguide FELs in the small-signal regime and for wiggler field that is both practical and beneficial

Published in:

Plasma Science, IEEE Transactions on  (Volume:30 ,  Issue: 2 )