By Topic

Bidirectional deformable matching with application to handwritten character extraction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kwok-Wai Cheung ; Dept. of Comput. Sci., Hong Kong Baptist Univ., Kowloon, China ; Dit-Yan Yeung ; Chin, R.T.

To achieve integrated segmentation and recognition in complex scenes, the model-based approach has widely been accepted as a promising paradigm. However, the performance is still far from satisfactory when the target object is highly deformed and the level of outlier contamination is high. In this paper, we first describe two Bayesian frameworks, one for classifying input patterns and another for detecting target patterns in complex scenes using deformable models. Then, we show that the two frameworks are similar to the forward-reverse setting of Hausdorff matching and that their matching and discriminating properties are complementary to each other. By properly combining the two frameworks, we propose a new matching scheme called bidirectional matching. This combined approach inherits the advantages of the two Bayesian frameworks. In particular, we have obtained encouraging empirical results on shape-based pattern extraction, using a subset of the CEDAR handwriting database containing handwritten words of highly varying shape.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:24 ,  Issue: 8 )