By Topic

Optimized compression of triangle mesh geometry using prediction trees

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kronrod, B. ; Dept. of Comput. Sci., Technion-Israel Inst. of Technol., Haifa, Israel ; Gotsman, C.

Almost all triangle mesh compression algorithms to date are driven by the mesh connectivity code. The geometry code usually employs a straightforward prediction method applied to the vertex sequence as dictated by the connectivity code. This generates a suboptimal geometry code, which results in significant loss in code efficiency, since the geometry dominates the mesh information content. The paper proposes a manifold mesh code which optimizes the geometric component, at the slight expense of the connectivity code. This mesh geometry code is shown to be up to 50% more compact than the state-of-the-art geometry code of Touma and Gotsman (1998), especially for models with non-smooth geometry, such as CAD models.

Published in:

3D Data Processing Visualization and Transmission, 2002. Proceedings. First International Symposium on

Date of Conference:

2002