By Topic

Match propagation for image-based modeling and rendering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lhuillier, M. ; Dept. of Comput. Sci., Hong Kong Univ. of Sci. & Technol., Kowloon, China ; Long Quan

This paper presents a quasi-dense matching algorithm between images based on the match propagation principle. The algorithm starts from a set of sparse seed matches, then propagates to the neighboring pixels by the best-first strategy, and produces a quasi-dense disparity map. The quasi-dense matching aims at broad modeling and visualization applications which rely heavily on matching information. Our algorithm is robust to initial sparse match outliers due to the best-first strategy. It is efficient in time and space as it is only output sensitive. It handles half-occluded areas because of the simultaneous enforcement of newly introduced discrete 2D gradient disparity limit and the uniqueness constraint. The properties of the algorithm are discussed and empirically demonstrated. The quality of quasi-dense matching are validated through intensive real examples.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:24 ,  Issue: 8 )