By Topic

Human activity recognition using multidimensional indexing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
J. Ben-Arie ; ECE Dept., Illinois Inst. of Technol., Chicago, IL, USA ; Zhiqian Wang ; P. Pandit ; S. Rajaram

In this paper, we develop a novel method for view-based recognition of human action/activity from videos. By observing just a few frames, we can identify the activity that takes place in a video sequence. The basic idea of our method is that activities can be positively identified from a sparsely sampled sequence of a few body poses acquired from videos. In our approach, an activity is represented by a set of pose and velocity vectors for the major body parts (hands, legs, and torso) and stored in a set of multidimensional hash tables. We develop a theoretical foundation that shows that robust recognition of a sequence of body pose vectors can be achieved by a method of indexing and sequencing and it requires only a few pose vectors (i.e., sampled body poses in video frames). We find that the probability of false alarm drops exponentially with the increased number of sampled body poses. So, matching only a few body poses guarantees high probability for correct recognition. Our approach is parallel, i.e., all possible model activities are examined at one indexing operation. In addition, our method is robust to partial occlusion since each body part is indexed separately. We use a sequence-based voting approach to recognize the activity invariant to the activity speed.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:24 ,  Issue: 8 )